![]() |
![]() |
||||||||
|
![]() |
Electric stock may recuperate energy during braking by using traction motors as generators. 16,7 Hz, 15 kV supply systems offer good conditions for feeding back recovered energy. |
![]() |
Technology field: Regenerative braking and energy management |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||
![]() |
General information | ||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Description | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Principle: The energy put into accelerating a train and into moving it uphill is “stored” in the train as kinetic and potential energy. In vehicles with electric traction motors (this includes electric, diesel-electric and hybrid stock) a great part of this energy can be reconverted into electric energy by using the motors as generators when braking. The electric energy is transmitted “backwards” along the conversion chain and fed back into the catenary. This is known as regenerative braking and widely used in railways. Braking and safety: Braking safety requires installation of additional brakes besides regenerative brakes, for two reasons:
Use of recovered energy: The energy recovered by dynamic braking is used for different purposes:
Influence of supply system The electric supply system has a considerable influence on the feasibility of energy recovery: AC systems are generally better fitted for recovery and obtain much higher recovery rates. Under DC regeneration is only occasionally or partly possible. 15 kV 16 2/3 Hz systems are very well fitted for regenerative braking for two reasons:
For these two reasons recovery rates in 16,7 Hz systems are usually high. Feeding back into the national grid This is in principle possible in AC networks. However, in 16,7 Hz systems there is usually no need for a feedback into the superior 3-phase grid since the chances for using the recovered energy in the railway grid are very high. |
||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||
![]() |
General criteria | ||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Status of development: in use | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Regenerative braking is used in railways world-wide. | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Time horizon for broad application: now | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Expected technological development: basically exploited | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Regenerative braking is a mature technology. | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
Motivation: | |||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
|
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Benefits (other than environmental): big | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Wear on mechanical brakes The use of regenerative brakes reduces wear and maintenance of the mechanical brakes. It may also be possible to reduce the complexity, weight and cost of the mechanical brakes. Since regenerative braking works without friction, no wearing parts are present. |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Barriers: medium | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
„Non-receptive“ catenary Main barrier for the use of regenerative braking is the fact that the supply system is often „non-receptive“, i.e. it does not accept the recovered energy because there is no other train close enough to use it. However, this problem arises in 16,7 Hz systems only rarely due to the reasons laid out in Description. Insufficient braking power The power of regenerative brakes is roughly the same as the one installed for traction. For many situations (trains running late, bad track conditions, unexpected stop signals) this is not sufficient. In this case regenerative brakes are blended with dissipative brakes or completely replaced by them. Generally, EMUs have a better regenerative braking performance than loco-hauled trains, since more axles are powered. The higher the motor power and the more axles are powered, the more energy may be recovered. In the case of heavy freight trains only a small fraction of the kinetic energy can be recovered, since tractive force is supplied only by the locomotive and (mechanical) braking force is distributed along the entire train. The situation is somewhat improved in double traction, i.e. with a train hauled by two locomotives. In loco-hauled stock, there is a general limitation to the braking of the locomotive. If the locomotive brakes, the following cars exert a longitudinal force on the rear of the locomotive. In order to avoid an increased derailment risk, this force must not exceed a certain limit. Especially in freight trains this is a strong limitation for the braking performance of the locomotive and thus for regenerative braking. Running time Regenerative braking slightly prolongs running time compared to trains using mechanical brakes. This effect is small, but may lead to the use of mechanical brakes (or blending) in case of tight running schedules. Acceptance Acceptance is generally high. However some drivers are reported to be reluctant to use regenerative brakes because of safety or timetable concerns. Operation concept of the locomotive Operation concept of the driver cabin may not be optimised for the use of regenerative braking. For example, in most locomotives at DB the brake handles are usually coupled for blended braking. For an exclusive use of electric braking, an extra effort is required to decouple the handles. |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
Success factors: | |||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
The future potential may be exploited by removing some of the present obstacles. This includes
|
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Applicability for railway segments: high | ||||||||||||||||||||||||||||||||
![]() |
![]() |
Type of traction: electric - AC | |||||||||||||||||||||||||||||||||
![]() |
![]() |
Type of transportation: passenger - main lines, passenger - high speed, passenger - regional lines, passenger - suburban lines, freight | |||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
The present evaluation focuses on regenerative braking in 15 kV, 16,7 Hz systems. For regenerative braking potential in other systems, cf. regenerative braking in 25 kV, 50 Hz systems and regenerative braking in DC systems. | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
Grade of diffusion into railway markets: | |||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Diffusion into relevant segment of fleet: > 20% | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Share of newly purchased stock: > 50% | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
The share of stock equipped with regenerative brakes may vary considerably between European countries but is generally high. In new stock regenerative braking is standard technology. | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Market potential (railways): high | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
Example: | |||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||
![]() |
Environmental criteria | ||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Impacts on energy efficiency: | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Energy efficiency potential for single vehicle: 5 - 10% | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Energy efficiency potential throughout fleet: > 5% | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Share of recoverable energy: Share of recoverable energy heavily depends on speed and stopping pattern. The following are typical values (referring to total energy demand) for different operation types Main lines: 15% Regional lines: 35 % Suburban lines: 45% Freight lines: 20% The recovery rate actually reached in operation only exploits a part of this potential. This is due to several reasons:
There is little (if any) quantitative data on these effects. The following table gives some estimates for 16,7 Hz systems:
Source: IZT Since modern stock usually has the capacity to recover energy during braking, a big part of this potential is already exploited in today’s railway operation. Nevertheless, some potential is not exploited due to the following reasons:
The remaining potential is extremely dependent on the situation of an individual railway company but may be up to half of the above values, i.e. ~ 3 - 13%. |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Other environmental impacts: neutral | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||
![]() |
Economic criteria | ||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Vehicle - fix costs: low | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Vehicle - running costs: significant reduction | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Reduced energy costs and maintenance costs through reduced wear in mechanical brakes. | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Infrastructure - fix costs: none | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
No additional infrastructure is needed. | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Infrastructure - running costs: unchanged | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Scale effects: none | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Amortisation: < 1 year | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||
![]() |
Application outside railway sector (this technology is railway specific) | ||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||
![]() |
Overall rating | ||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Overall potential: very promising | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Time horizon: short-term | ||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
16,7 Hz, 15 kV systems offer ideal conditions for regenerative braking. Recovered energy can be transmitted over long distances due to high voltage and phase homogeneity. This is reflected in high recovery rates in these supply systems. Nevertheless, the potential is not fully exploited. Barriers range from limited braking power to unfavourable operating concepts of traction units. Future improvements will come from transition to MU stock and optimised concepts for blended braking. |
![]() |
References / Links: Andersson 2000; Moninger, Gunselmann 1998; Piro (no year) |
![]() |
Attachments: |
![]() |
Related projects: |
![]() |
Contact persons: |
![]() |
![]() |
© UIC - International Union of Railways 2003 |