![]() |
![]() |
||||||||
|
![]() |
The wheel-mounted permanent magnet synchronous motor is an interesting alternative to conventional AC asynchronous motors with gear transmission. In a wheel-mounted construction the torque of the motor is directly transmitted to the wheel. |
![]() |
Technology field: Optimisation of traction technologies |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
General information | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Conventional electric rail vehicles transmit the driving force of the traction motor to the wheelset via flexible couplings and reduction gears. The torque of the traction motor is multiplied by the gear ratio. As an alternative to conventional AC asynchronous motors with gear transmission, a wheel-mounted permanent magnet synchronous motor is currently developed by a number of railways and manufacturers. This is favoured by technological developments of recent decades such as
Wheel-mounted construction In a wheel-mounted permanent magnet synchronous motor the torque of the motor is directly transmitted to the wheel without using gears and flexible couplings. This leads to reduced transmission losses (and thus energy consumption), noise, maintenance, mass and volume. If the transmission gears are eliminated the motor has to supply a higher torque. Asynchronous motors do not meet this requirement and can therefore not be realised as a wheel-mounted construction. Permanent magnet synchronous motor Besides transversal flux motors, the permanent magnet synchronous motor is a promising candidate for a wheel-mounted construction due to high specific torques. It consists of a permanent magnet rotor driven by a rotating magnetic field realised through 3-phase AC-fed coils. It is called synchronous, because the rotor will rotate at a constant speed which is synchronous with the rotation of the magnetic field. Technological realisation In order to achieve strong permanent magnetic fields with magnets with small volume and weight, rare earth permanent magnets are used (e.g. Nd-Fe-B). Constructive options: There are several constructive options for wheel-mounted permanent magnet synchronous motors. Figure 1: Constructive options
Source: Matsuoka, Kondoh, Hata 1997. (i) Inner vs. outer rotor motor Electric motors can be of inner or outer rotor type. Usually traction motors are of inner rotor type, i.e. the outer part is fixed and the inner part rotates. Inner rotor type motors direct drive traction motor, have an inner rotor directly connected to the axle and an outer stator. In the case of an outer rotor type direct drive traction motor, the outer rotor is directly connected to the wheels, and the inner stator is fixed to the axle. Whereas the inner rotor type traction motor requires its own bearings, the outer rotor type does not, which leads to a simpler construction. (ii) Dual wheel drive and individual wheel drive (independent wheel drive) In conventional rail vehicles, both wheels are connected by the axle, and therefore rotate simultaneously ("dual wheel drive"). Outer rotor type traction motor may be divided into two motors, each wheel rotating independently. Thus an independent wheel driving bogie may be realized allowing adjustability to different rail gauges. Technical data Table 1 gives a comparison of some technical key features of wheel-mounted permanent magnet synchronous motor and a conventional induction motor. Table 1: Comparison between wheel-mounted permanent magnet synchronous motor of RMT1A type and conventional induction motor
Source: Matsuoka, Kondoh, Hata 1997. Fields of application Railways. Manufacturer R&D in railways and manufacturers. Magnetmotor (Starnberg, Germany) produces permanent magnet synchronous motors for bus sector. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
General criteria | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Status of development: prototype | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Time horizon for broad application: 5 - 10 years | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Manufacturers claim that production could start quickly if there was a demand from railways. The power class of permanent magnet synchronous motors currently produced for busses is not too far away from the ones needed for light rail applications. Even so, broad application would take some years since refitting of existing vehicles is not an option. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Expected technological development: dynamic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
Motivation: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Benefits (other than environmental): big | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Maintenance Maintenance reduced (no gears and flexible couplings) Constructive advantages Small volume and direct drive facilitate low-floor and double-decked construction, independent wheel drives offer potential for gauge-adjustable vehicles. Motor cooling Due to lower losses, heat removal can be realised by an exterior water-cooling rather than ventilation. This reduces dirt contamination of motor and thus maintenance and wear. Table 2: Features of wheel-mounted direct drive and its applications (Japanese perspective)
Source: Matsuoka, Kondoh, Hata 1997. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Barriers: medium | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Safety Wheel-mounted permanent magnet synchronous motors may cause safety problems: If power failure occurs and the train has to be removed quickly to clear the track, the induced currents in the motor have to be handled (since induction effects cannot be switched off, due to permanent magnetism). The solution of this problem requires additional effort. Complexity Whereas 4 asynchronous motors can be fed by one inverter, permanent magnet synchronous motor need one individual inverter each. Unsprung mass In a wheel-mounted construction the heavy rotor magnets contribute to unsprung mass and put additional strain on wheel-track system. Acceptance Asynchronous motors are a successful standard technology. Consequently, reluctance to take the risk to introduce a new technology is high. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
Success factors: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Applicability for railway segments: high | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
Type of traction: electric - DC, electric - AC | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
Type of transportation: passenger - main lines, passenger - high speed, passenger - regional lines, passenger - suburban lines, freight | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
In principle, wheel-mounted permanent magnet synchronous motors could be applied to all segments of electric fleet. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
Grade of diffusion into railway markets: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Diffusion into relevant segment of fleet: 0 % | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Share of newly purchased stock: 0 % | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Wheel-mounted permanent magnet synchronous motor is not marketable yet. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Market potential (railways): high | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Barriers could impede introduction of wheel-mounted permanent magnet synchronous motors. Otherwise market potential could be very big in long-term perspective. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
Example: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Tokyo commuter train JR East is presently manufacturing test vehicles of Advances commuter train for Tokyo Metropolitan Area using wheel-mounted permanent magnet synchronous motors. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
Environmental criteria | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Impacts on energy efficiency: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Energy efficiency potential for single vehicle: 2 - 5% | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Energy efficiency potential throughout fleet: 2 - 5% | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
A wheel-mounted permanent magnet synchronous motor has a higher efficiency than the system consisting of asynchronous induction motor drive, mainly due to missing transmission gears.
We heuristically assume that an intermediate value of 4 % is realistic for many applications. This is used in the following elasticity table.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Other environmental impacts: positive | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Noise Noise is reduced compared to conventional drive solutions due to elimination of gears and elimination of ventilation. Lubricants Through the elimination of gears the loss of lubricants into the environment can be avoided. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
Economic criteria | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Vehicle - fix costs: low | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
At present, the price is difficult to predict but experts estimate that permanent magnet synchronous motor will be more expensive than asynchronous motor due to expensive rare earth magnets. However higher motor price will be roughly compensated by saved costs for gears. Some authors (cf. Koch et al. 2002) even assume lower overall investment costs through eliminated gears. This could be true if scale effects can be realised. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Vehicle - running costs: significant reduction | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Both maintenance and energy costs are appreciably reduced. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Infrastructure - fix costs: none | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Infrastructure - running costs: unchanged | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
There might be an almost negligible increase in infrastructure costs due to increased wear and tear on track (unsprung mass!). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Scale effects: medium | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Amortisation: (no data) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
(no details available) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
Application outside railway sector (this technology is railway specific) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
Overall rating | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Overall potential: promising | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Time horizon: long-term | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
Wheel mounted permanent magnet synchronous drives are an attractive option for future vehicle layout since they offer further increase in power density and overall traction efficiency. Principal technological or economic barriers do not exist or seem solvable in mid-term. Permanent magnet synchronous technology is more mature at present than transversal flux technology which is also discussed for a wheel-mounted drive. |
![]() |
References / Links: Koch 2000; Matsuoka et al. 1997 |
![]() |
Attachments: |
![]() |
Related projects: High performance motor for direct drive |
![]() |
Contact persons: |
![]() |
![]() |
© UIC - International Union of Railways 2003 |