 |
 |
 |
 |
 |
 |
 |
 |
General information
|
 |
 |
 |
 |
 |
 |
|
 |
 |
 |
Description
|
|
|
 |
 |
 |
According to Swedish KTH railway group, in long trains surface friction from
sides and roofs accounts for 27,0% of air resistance, the underfloor equipment
for an additional 7,5 %. Since these effects are roughly proportional to train
length (which is not true for effects from head and tail!), they play a smaller
(but still significant) role in short trains.
There is some potential for improvement by
- streamlining the outer shell
- finding surface coatings for train sides and roofs that minimise surface
friction
- optimising coach transition areas (which cause major flow separations).
ETC recommends that gaps between consecutive coaches should not exceed 250
mm.
- optimising arrangement of windows, doors and door steps
- underskirting, i.e. covering the rugged structures of the underfloor
surface by a smooth cover.
|
 |
 |
General criteria
|
 |
 |
 |
 |
 |
 |
|
 |
 |
 |
Status of development: in use |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Time horizon for broad application: not applicable |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Expected technological development: basically exploited |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
|
 |
 |
Motivation:
|
|
|
 |
 |
 |
- Energy saving through reduced running resistance
- Noise reduction
|
 |
 |
 |
 |
|
 |
 |
 |
Benefits (other than environmental): none |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Barriers: (no data) |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
|
 |
 |
Success factors:
|
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Applicability for railway segments: medium |
|
|
 |
 |
Type of traction: electric - DC, electric - AC, diesel
|
|
|
 |
 |
Type of transportation: passenger - main lines, passenger - high speed
|
|
|
 |
 |
 |
Most of the measures listed in Description, are not suited for retrofit measures but are rather design issues for new stock. |
 |
 |
 |
 |
|
|
 |
 |
Grade of diffusion into railway markets:
|
|
 |
 |
 |
Diffusion into relevant segment of fleet: not applicable |
|
 |
 |
 |
Share of newly purchased stock: not applicable |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Market potential (railways): not applicable |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
|
 |
 |
Example:
|
|
|
 |
 |
 |
(no details available) |
 |
 |
Environmental criteria
|
 |
 |
 |
 |
 |
 |
|
 |
 |
 |
Impacts on energy efficiency:
|
|
 |
 |
 |
Energy efficiency potential for single vehicle: 2 - 5% |
|
 |
 |
 |
Energy efficiency potential throughout fleet: < 1% |
|
|
 |
 |
 |
According to European Transport Consult, in some high speed trains up to 3 % of the energy consumption could be saved by underskirting alone.
However, some of the optimisation potential is of rather theoretical nature and difficult to realize. Therefore, the fleet-wide potential is estimated to be below 1%. |
 |
 |
 |
 |
|
 |
 |
 |
Other environmental impacts: neutral |
|
|
 |
 |
 |
(no details available) |
 |
 |
Economic criteria
|
 |
 |
 |
 |
 |
 |
|
 |
 |
 |
Vehicle - fix costs: (no data) |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Vehicle - running costs: significant reduction |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Infrastructure - fix costs: none |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Infrastructure - running costs: unchanged |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Scale effects: not applicable |
|
|
 |
 |
 |
(no details available) |
 |
 |
 |
 |
|
 |
 |
 |
Amortisation: (no data) |
|
|
 |
 |
 |
(no details available) |
 |
 |
Application outside railway sector (this technology is railway specific)
|
 |
 |
Overall rating
|
 |
 |
 |
 |
 |
 |
|
 |
 |
 |
Overall potential: interesting |
|
 |
 |
 |
Time horizon: mid-term |
|
|
 |
 |
 |
The theoretical potential for improving the aerodynamics of train sides and underfloor equipment is considerable. However, the possibilities for an implementation of many measures such as a reduction of the gap space between consecutive coaches are rather limited. Feasibility of underskirting seems higher. Some of the measures should be given more emphasis in procurement of new high-speed stock. |