
The concept of elasticities

The energy consumption of a train is influenced by a number of parameters such as mass, efficiency of traction equipment, running resistance and comfort functions. Most energy efficiency measures and technologies influence one or several of these parameters. The concept of elasticities helps to calculate the corresponding effect on the total energy consumption of the train. For example, an elasticity of energy consumption with respect to running resistance of 0,4 means that reducing running resistance by 10%, cuts energy consumption by $0.4 \times 10\% = 4\%$.

Obviously these elasticities heavily depend on the individual train and operation context. However, a number of typical operation contexts can be given which yield good estimates for a wide range of real train runs. Within in the EVENT project the following 13 train/operation types were chosen as representative:

For these 13 types the elasticities of total energy consumption with respect to mass, running resistance and efficiency of the power train were calculated. The results are given in the following table:

© UIC - International Union of Railways 2003

			Elasticities with regard to		
	Traction	Recuperation	traction	mass	running resistance
			efficiency	0.4 -	
High speed train	electric	no	1,00	0,17	0,63
		yes	1,11	0,12	0,66
Intercity train	electric	no	1,00	0,19	0,61
		yes	1,12	0,14	0,65
	diesel	-	1,00	0,19	0,61
Regional train	electric	no	1,00	0,52	0,27
		yes	1,33	0,44	0,31
	diesel	-	1,00	0,52	0,27
Suburban train	electric	no	1,00	0,64	0,15
		yes	1,42	0,57	0,18
	diesel	-	1,00	0,64	0,15
Freight	electric	no	1,00	0,29	0,71
	diesel	-	1,00	0,29	0,71

Example: Medium frequency transformer

Efficiency of medium frequency transformers: > 94%

Efficiency of conventional transformers: ~ 92%

This corresponds to an increase of efficiency of the transformer of 2 - 3%. This efficiency gain directly translates into an equal gain in the overall efficiency of the power train (since it is the product of the efficiencies of the individual components). This yields the following table specifying in the last column the effect on the total energy consumption for the individual train classes.

		Brake	Effect on	Elasticity with	Effect on
	Traction	energy	efficiency of	regard to efficiency	total energy
		recovery	power train	of power train	consumption
High speed	Electric	no		1,00	2 – 3 %
train	(16,7 Hz)	yes		1,14	2 – 3 %
Intercity train	Electric	no		1,00	2 – 3 %
	(16,7 Hz)	yes		1,15	2 – 3 %
Regional train	Electric	no	2 - 3 %	1,00	2 – 3 %
	(16,7 Hz)	yes	2 - 3 70	1,43	3 – 4 %
Suburban train	Electric	no		1,00	2 – 3 %
	(16,7 Hz)	yes		1,55	3 – 5 %
Freight	Electric	no		1,00	2 - 3 %
	(16,7 Hz)	no			2 - 3 70
	2 – 5 %				

© UIC - International Union of Railways 2003